613 research outputs found

    Trends in health care commissioning in the English NHS: an empirical analysis

    Get PDF
    In recent years there have been marked changes in organisational structures and budgetary arrangements in the English NHS, potentially altering the relationships between purchasers (primary care organisations (PCOs) and general practices) and providers. Using data on elective hospital admissions from 1997/98 to 2002/03 we find that commissioning has become significantly more concentrated at PCO and GP level. There was a reduction in the average number of different providers used by PCOs (16.7 to 14.2), an increase in the average share of admissions accounted for by the main provider (49% to 69%), and an increase in the average Herfindahl index (0.35 to 0.55). About half the increase in concentration arose from the increase in the number of purchasing organisations from 100 to 302. The rest was due to mergers amongst providers and the abolition of fundholding. GP fundholding practices which held budgets for elective admissions had less concentrated admission patterns than non-fundholders whose admissions were paid for by their primary care organisation. There was an increase in concentration of admissions for both types of GP practice but fundholders used more providers, had smaller shares at their main provider, and had smaller Herfindahl indices.concentration, Herfindahl, purchasing, budgets, elective admissions

    Trade-offs and synergies in the ecosystem service demand of urban brownfield stakeholders

    Get PDF
    Brownfield site redevelopment presents an opportunity to create urban green spaces that provide a wide range of ecosystem services. It is important, therefore, to understand which ecosystem services are demanded by stakeholders and whether there are trade-offs or synergies in this demand. We performed a quantitative survey of ecosystem service demand from brownfield sites that included all major stakeholder groups. Results showed that there was a strong trade-off between demand for services related to property development (e.g. ground strength and low flood risk) and all other services, which were linked to vegetated sites. There was a secondary, but weak, trade-off between demand for services of more ‘natural’ vegetated sites (e.g. with a biodiversity protection role) and those linked to aesthetics and recreation. Stakeholders with a strong preference for biodiversity protection formed a distinct group in their ecosystem service demands. While a ‘development’ vs ‘green space’ trade-off may be unavoidable, the general lack of strong trade-offs in demand for other services indicated that the creation of multifunctional greenspaces from former brownfield sites would be desirable to most stakeholders, as long as these are biophysically possible

    Mechanical properties of connected carbon nanorings via molecular dynamics simulation

    Get PDF
    Stable, carbon nanotori can be constructed from nanotubes. In theory, such rings could be used to fabricate networks that are extremely flexible and offer a high strength-to-density ratio. As a first step towards realizing such nanochains and nanomaile, the mechanical properties of connected carbon nanorings were investigated via molecular dynamics simulation. The Young's modulus, extensibility and tensile stength of nanorings were estimated under conditions that idealize the constraints of nanochains and nanomaile. The results indicate nanorings are stable under large tensile deformation. The calculated Young's modulus of nanorings was found increase with deformation from 19.43 GPa to 121.94 GPa (without any side constraints) and from 124.98 GPa to 1.56 TPa (with side constraints). The tensile strength of unconstrained and constrained nanorings is estimated to be 5.72 and 8.522 GPa, respectively. The maximum strain is approximately 39% (nanochains) and 25.2% (nanomaile), and these deformations are completely reversible

    New concepts of metallic bonding based on valence-bond ideas

    Get PDF
    From generalized-valence-bond calculations on numerous Li-atom clusters (Li_n and Li_n^+, n <- 13), we conclude that the optimum bonding involves singly occupied orbitals localized interstitially (in tetrahedra). Rules based on the calculations are used to predict low-energy isomers (leading for Li^+_(13) to low-symmetry structures that are significantly more stable than the icosahedron but retain local fivefold-symmetry axes) and are applied to infinite metallic systems

    Mechanically bonded macromolecules

    Get PDF
    Mechanically bonded macromolecules constitute a class of challenging synthetic targets in polymer science. The controllable intramolecular motions of mechanical bonds, in combination with the processability and useful physical and mechanical properties of macromolecules, ultimately ensure their potential for applications in materials science, nanotechnology and medicine. This tutorial review describes the syntheses and properties of a library of diverse mechanically bonded macromolecules, which covers (i) main-chain, side-chain, bridged, and pendant oligo/polycatenanes, (ii) main-chain oligo/polyrotaxanes, (iii) poly[c2]daisy chains, and finally (iv) mechanically interlocked dendrimers. A variety of highly efficient synthetic protocols—including template-directed assembly, step-growth polymerisation, quantitative conjugation, etc.—were employed in the construction of these mechanically interlocked architectures. Some of these structures, i.e., side-chain polycatenanes and poly[c2]daisy chains, undergo controllable molecular switching in a manner similar to their small molecular counterparts. The challenges posed by the syntheses of polycatenanes and polyrotaxanes with high molecular weights are contemplated

    A derivation of the Liouville equation for hard particle dynamics with non-conservative interactions

    Get PDF
    The Liouville equation is of fundamental importance in the derivation of continuum models for physical systems which are approximated by interacting particles. However, when particles undergo instantaneous interactions such as collisions, the derivation of the Liouville equation must be adapted to exclude non-physical particle positions, and include the effect of instantaneous interactions. We present the weak formulation of the Liouville equation for interacting particles with general particle dynamics and interactions, and discuss the results using an example

    Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) Complexes

    Get PDF
    The photophysical properties for a series of facial (fac) cyclometalated Ir(III) complexes (fac-Ir(C^N)_3 (C^N = 2-phenylpyridyl (ppy), 2-(4,6-difluorophenyl)pyridyl (F2ppy), 1-phenylpyrazolyl (ppz), 1-(2,4-difluorophenyl)pyrazolyl) (F2ppz), and 1-(2-(9,9′-dimethylfluorenyl))pyrazolyl (flz)), fac-Ir(C^N)_2(C^N′) (C^N = ppz or F2ppz and C^N′ = ppy or F2ppy), and fac-Ir(CC′)_3 (C^C′ = 1-phenyl-3-methylbenzimidazolyl (pmb)) have been studied in dilute 2-methyltetrahydrofuran (2-MeTHF) solution in a temperature range of 77−378 K. Photoluminescent quantum yields (Φ) for the 10 compounds at room temperature vary between near zero and unity, whereas all emit with high efficiency at low temperature (77 K). The quantum yield for fac-Ir(ppy)_3 (Φ = 0.97) is temperature-independent. For the other complexes, the temperature-dependent data indicates that the luminescent efficiency is primarily determined by thermal deactivation to a nonradiative state. Activation energies and rate constants for both radiative and nonradiative processes were obtained using a Boltzmann analysis of the temperature-dependent luminescent decay data. Activation energies to the nonradiative state are found to range between 1600 and 4800 cm^−1. The pre-exponential factors for deactivation are large for complexes with C^N ligands (1011−1013 s^−1) and significantly smaller for fac-Ir(pmb)_3 (109 s^−1). The kinetic parameters for decay and results from density functional theory (DFT) calculations of the triplet state are consistent with a nonradiative process involving Ir−N (Ir−C for fac-Ir(pmb)_3) bond rupture leading to a five-coordinate species that has triplet metal-centered (^3MC) character. Linear correlations are observed between the activation energy and the energy difference calculated for the emissive and ^3MC states. The energy level for the ^3MC state is estimated to lie between 21700 and 24000 cm^−1 for the fac-Ir(C^N)_3 complexes and at 28000 cm^−1 for fac-Ir(pmb)_3

    Sodium Diffusion through Aluminum-Doped Zeolite BEA System: Effect of Water Solvation

    Get PDF
    To investigate the effect of hydration on the diffusion of sodium ions through the aluminum-doped zeolite BEA system (Si/Al = 30), we used the grand canonical Monte Carlo (GCMC) method to predict the water absorption into aluminosilicate zeolite structure under various conditions of vapor pressure and temperature, followed by molecular dynamics (MD) simulations to investigate how the sodium diffusion depends on the concentration of water molecules. The predicted absorption isotherm shows first-order-like transition, which is commonly observed in hydrophobic porous systems. The MD trajectories indicate that the sodium ions diffuse through zeolite porous structures via hopping mechanism, as previously discussed for similar solid electrolyte systems. These results show that above 15 wt % hydration (good solvation regime) the formation of the solvation cage dramatically increases sodium diffusion by reducing the hopping energy barrier by 25% from the value of 3.8 kcal/mol observed in the poor solvation regime

    Passive CO<sub>2</sub> removal in urban soils:evidence from brownfield sites

    Get PDF
    Management of urban brownfield land can contribute to significant removal of atmospheric CO2 through the development of soil carbonate minerals. However, the potential magnitude and stability of this carbon sink is poorly quantified as previous studies address a limited range of conditions and short durations. Furthermore, the suitability of carbonate-sequestering soils for construction has not been investigated. To address these issues we measured total inorganic carbon, permeability and ground strength in the top 20 cm of soil at 20 brownfield sites in northern England, between 2015 and 2017. Across all sites accumulation occurred at a rate of 1–16 t C ha−1 yr−1, as calcite (CaCO3), corresponding to removal of approximately 4–59 t CO2 ha−1 yr−1, with the highest rate in the first 15 years after demolition. C and O stable isotope analysis of calcite confirms the atmospheric origin of the measured inorganic carbon. Statistical modelling found that pH and the content of fine materials (combined silt and clay content) were the best predictors of the total inorganic carbon content of the samples. Measurement of permeability shows that sites with carbonated soils possess a similar risk of run-off or flooding to sandy soils. Soil strength, measured as in-situ bearing capacity, increased with carbonation. These results demonstrate that the management of urban brownfield land to retain fine material derived from concrete crushing on site following demolition will promote calcite precipitation in soils, and so offers an additional CO2 removal mechanism, with no detrimental effect on drainage and possible improvements in strength. Given the large area of brownfield land that is available for development, the contribution of this process to CO2 removal by urban soils needs to be recognised in CO2 mitigation policies

    Understanding and Applying Ecological Principles in Cities

    Get PDF
    Renaturing cities requires a thorough understanding of how plants and animals interact with the urban environment and humans. But cities are a challenging environment for ecologists to work in, with high levels of heterogeneity and rapid rates of change. In addition, the hostile conditions often found in cities mean that each city, and region of a city, can have their own unique geographical context. In this chapter, we contrast urban ecological research in the UK and Brazil, to demonstrate the challenges and approaches needed to renature cities. In so doing, we provide a platform for global transferability of these locally contextualised approaches. The UK has a long history of urbanisation and, as a result of increasing extinction debts over 200 years, well-established urban ecological research. Research is generally focused on encouraging species back into the city. In contrast, Brazil is a biodiversity hotspot with relatively rich urban flora and fauna. This rich ecosystem is imperilled by current rapid urbanisation and lack of support for urban nature by city-dwellers. By working together and transferring expertise, UK and Brazilian researchers stand a better chance of understanding urban ecological processes and unlocking renaturing processes in each location. We present one such method for applying ecological knowledge to cities, so-called Ecological Engineering, in particular by discussing ecomimicry—the adaptive approach needed to apply global ecological principles to local urban challenges. By reading the ecological landscape in which urban developments sit and applying tailored green infrastructure solutions to new developments and greenspaces, cities may be able to reduce the rate at which extinction debt is accumulated
    • …
    corecore